

video Solution on Website:-	https://physicsaholics.com/h	nome/courseDetails/46
race solution on weesite.	Tittps://priysicsariolics.com/r	iorric/course Details/ 40

https://youtu.be/22HMopWfUK4 Video Solution on YouTube:-

Written Solution on Website:https://physicsaholics.com/note/notesDetalis/19

- Find the radiation pressure of solar radiation on the equator of earth (assuming Q 1. radiation is completely absorbed). Solar constant is $1.4 \text{ kW/}m^2$
 - (a) 4.7×10^{-5} Pa
- (b) 4.7×10^{-6} Pa
- (c) 2.37×10^{-6} Pa
- (d) 9.4×10^{-6} Pa
- Q 2. Parallel beam of Light of intensity I is falling on a perfect mirror of area A. If angle of incidence is 60° , Find radiation force on mirror?
 - (a) IA/2c

(b) IA/4c

(c) IA/8c

- (d) None of these
- Light of intensity I is incident on a fixed plane surface at an angle 30° with normal to Q 3. the surface. If 50 % light is reflected and remaining light is absorbed then radiation pressure on the plate is: [Speed of light is c]

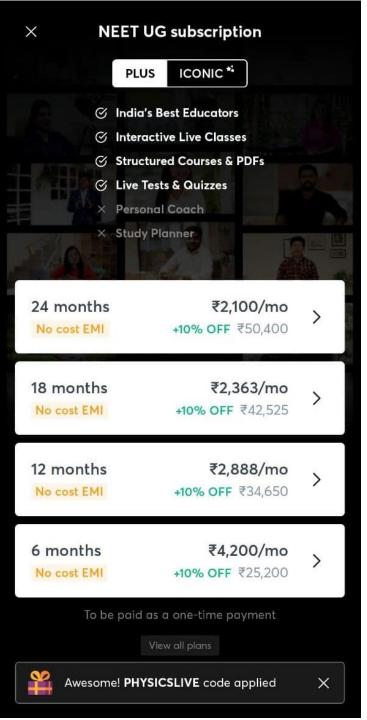
(a) $\frac{2I}{C}$ (c) $\frac{3I}{8C}$

- A radiation of 200W is incident on a surface which is 60% reflecting and 40% Q 4. absorbing. Find the net Force acting on the surface.
 - (a) 1.3×10^{-6} N
- (b) 1.07×10^{-6} N
- (c) 1.07×10^{-7} N
- (d) 1.3×10^{-7} N
- A monochromatic beam of light ($\lambda = 4900 \text{ Å}$) incident normally upon a surface Q 5. produces a pressure of 5 x 10⁻⁷ N/m² on it. Assuming that 25% of the light incident is reflected and the rest absorbed, find the number of photons falling per second on a unit area of thin surface.
 - (a) $6 \times 10^{20} m^{-2} s^{-1}$
- (b) $9 \times 10^{20} m^{-2} s^{-1}$
- (c) $3 \times 10^{20} m^{-2} s^{-1}$
- (d) $12 \times 10^{20} m^{-2} s^{-1}$
- Q.6 A point source of light of power 300 watt is placed at centre of Blackbody hemispherical shell of radius 1 meter. Find radiation force on hemisphere?
 - (a) 5×10^{-7} N
 - (b) 6×10^{-7} N
 - (c) 3×10^{-7} N
 - (d) 2.5×10^{-7} N
- Q 7. A horizontal plane mirror of mass 2 mg is balanced in air by a vertical beam of light having intensity $1000 \text{ W/}m^2$. Assuming 100% reflection, find area of mirror?
 - (a) $2 m^2$

(b) $3 m^2$

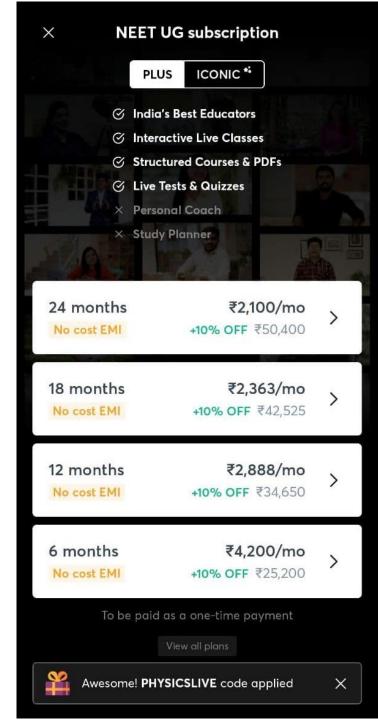
hysicsaholics

(c) $6 m^2$


- (d) None of these
- Q 8. Parallel beam of intensity I is falling on a blackbody sphere of radius R. Radiation force on sphere is
 - (a) $(I/c) \times 4\pi R^2$
- (b) (I/c) $\times 2\pi R^2$
- (c) $(I/c) \times \pi R^2$
- (d) None of these
- Q 9. How many photons of wavelength $\lambda = 6600$ nm must strike a totally reflecting screen per second at normal incidence so as to exert a force of 1N?
 - (a) 1.5×10^{27}
- (b) 2.5×10^{27}

(c) 5×10^{27}

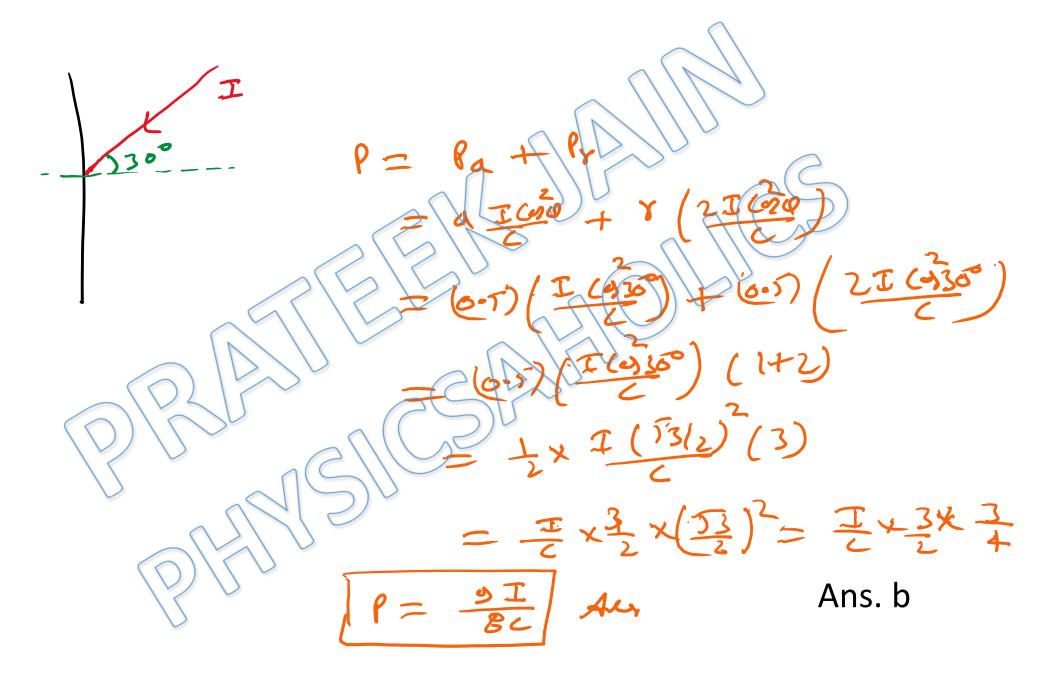
- (d) 5.5×10^{27}
- Q 10. Light rays are incident on an opaque sheet. Then they
 - (a) exert a force on the sheet
 - (b) transfer an energy to the sheet
 - (c) transfer momentum to the sheet
 - (d) All of above are correct

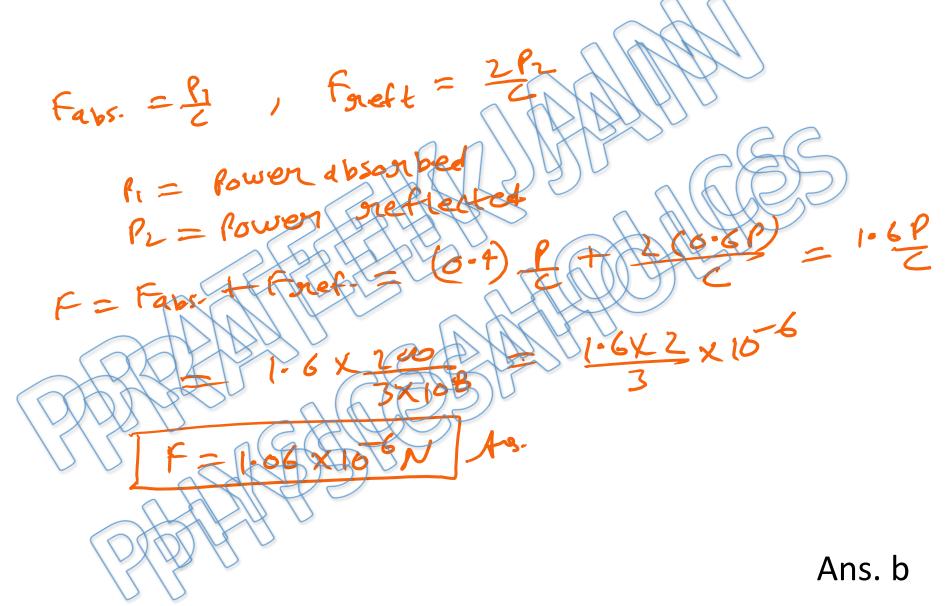


Q.1 b	Q.2 a	Q.3 b	Q.4 b	Q.5 c
Q.6 d	Q.7 b	Q.8 c	Q.9 c	Q.10 d

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS and learn from India's Top Faculties.

Physics DPP


DPP 2 – Radiation Pressure By Physicsaholics Team


Radiation Prissure = momentum gain ber Sec per unit Area

= Energy absorbed

,,,,,,

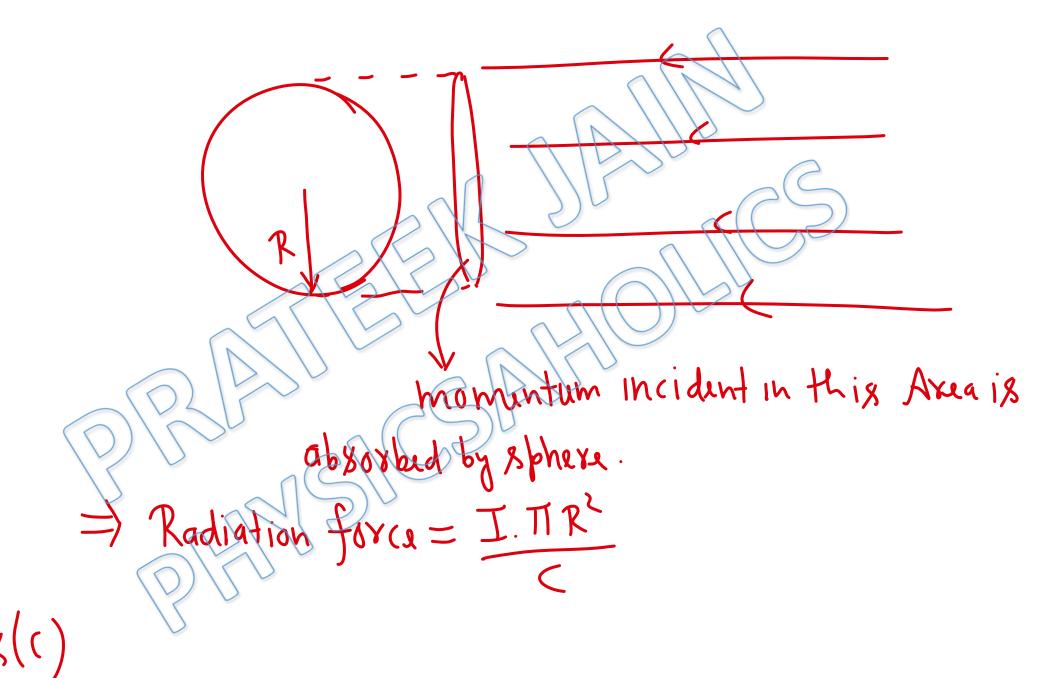
momentum incident/sec = IA Cosso Solution: 2 A(0860 Change in momentur/Sec 80 (IA (0860) (0860

Solution: 5 + n - no of photons incident Sec-=> n arr reflected & 3n are absorbed => change in momentame

POWER OF ROUNCE P=300 Watt

intensity at surface

I = P 4TIR2 momumtum absorbed by dA per


$$F = \frac{P}{4c}$$

$$= \frac{300}{4 \times 3 \times 10^8}$$

$$= 25 \times 10^{-8} \text{ N}$$

$$= 25 \times 10^{-8} \text{ N}$$
Ahs(d)

Solution: 7 radiation force = mg

Momentum of one photon =
$$\frac{L}{S}$$

He is photonic at striking/Sz.

Radiation force = $\frac{2nL}{S}$ = $\frac{(600 \times 10^{-34})}{2 \times 6.6 \times 10^{-34}}$

= $\frac{1000}{2} \times 10^{25}$

= 5×10^{25}

Light has energy as well as momentum.

So it can exert force transfer momentum

L transfer energy to a sheet.

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/46

Video Solution on YouTube:-

https://youtu.be/22HMopWfUK4

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/19

@Physicsaholics

@Physicsaholics_prateek

@NEET_Physics

@<u>IITJEE_Physics</u>

physicsaholics.com

Unacademy

CUSIS NIKIS